
Self-Organization for Coordinating Decentralized
Reinforcement Learning

Chongjie Zhang
Computer Science Dept.

University of Massachusetts
Amherst, MA 01002, US

chongjie@cs.umass.edu

Victor Lesser
Computer Science Dept.

University of Massachusetts
Amherst, MA 01002, US

lesser@cs.umass.edu

Sherief Abdallah
Institute of Informatics

British University in Dubai
Dubai, United Arab Emirates

sherief.abdallah@buid.ac.ae

ABSTRACT
Decentralized reinforcement learning (DRL) has been ap-
plied to a number of distributed applications. However, one
of the main challenges faced by DRL is its convergence. Pre-
vious work has shown that hierarchically organizational con-
trol is an effective way of coordinating DRL to improve its
speed, quality, and likelihood of convergence. In this pa-
per, we develop a distributed, negotiation-based approach to
dynamically forming such hierarchical organizations. To re-
duce the complexity of coordinating DRL, our self-organization
approach groups strongly-interacting learning agents together,
whose exploration strategies are coordinated by one super-
visor. We formalize this idea by characterizing interactions
among agents in a decentralized Markov Decision Process
model and defining and analyzing a measure that explicitly
captures the strength of such interactions. Experimental re-
sults show that our dynamically evolving organizations out-
perform predefined organizations for coordinating DRL.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

General Terms
Algorithms, Measurement, Experimentation

Keywords
Multiagent Learning, Self-Organization, Coordination

1. INTRODUCTION
A collaborative multiagent system (MAS) consists of a

group of agents that interact with each other in order to
optimize a global performance measure. Theoretically, the
underlying decision-making problem can be modeled as a de-
centralized Markov Decision Process (DEC-MDP) [1]. How-
ever, because of its complexity or the lack of access to the
transition or reward model, it is infeasible to generate an
optimal solution offline, except for the simplest cases. Dis-
tributed online learning provides an attractive, scalable, and
approximate alternative, where each agent learns its policy

Cite as: �������	
��
���� ��� �������
���	 �������
���� ����������
���� ��
����	� ����	��� ��
�	� ������ ������
�� ������� ���
��
��
Proc. of 9th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2010)� �
� ��� ��!� "
���!
� ���#$�
����
�%�!
�� ��� &���'(�)
*� +,.+/� 6,+,� :������� �
�
�
� ##';
��#*��	�� c© 6,+,� <�����
����
� =�%��
���� ��� �%������%� �	����
��
)%���
	��� �*����� &>>>'��

�
�'��	(' ��� ��	��� ��������'

�

�
�

� �

�

�

	

��������	

����	
������

�����������

����������������������
����������������������

���������������������
����������������������

�����������������������������
�������������� ���!��"�����

���#�������������������
������!��"�����

	��$���%���������������
������!��"�����

�

�

�

�

�

	

�

�

���&�����������'�(��%�
�����)����������������������

Figure 1: A supervision process of the organization-
based control framework

based on its local observations and rewards. Example ap-
plications include packet routing [2, 3], sensor networks [4],
distributed resource/task allocation [5], peer-to-peer infor-
mation retrieval [6], and elevator scheduling [7].

However, due to factors including non-stationary learning
environment, partial observability, a large number of agents
and communication delay between agents, decentralized re-
inforcement learning (DRL) may converge slowly, converge
to inferior equilibria, or even diverge in realistic settings. To
deal with issues of DRL convergence, our previous work [8]
proposed a supervision framework that employed periodic
organizational control to coordinate and guide agents’ learn-
ing exploration. The framework defined a multi-level orga-
nizational structure and a communication protocol for ex-
changing information between lower-level agents (or subor-
dinates) and higher-level supervising agents (or supervisors)
within an organization. As shown in Figure 1, subordinates
reported their abstract states and rewards to their super-
visors, which in turn generated and passed down supervi-
sory information. The supervision framework also specified
a supervisory policy adaptation that integrated supervisory
information into the learning process, guiding subordinates’
exploration of their state-action space. Empirical results
demonstrated that hierarchically organizational control is an
effective way of coordinating distributed learning to improve
its speed, quality, and likelihood of convergence [8].

The supervision framework proposed in [8] , however, suf-
fered from a serious limitation. The hierarchical organi-
zation, which formed the heart of the framework, was as-
sumed to be given and fixed. Addressing this limitation
involves answering the following questions: can supervisory

739

739-746

organizations automatically form while agents are concur-
rently learning their decision policies? do such dynamically
evolving organizations perform better than static supervi-
sory organizations? This paper makes a twofold contri-
bution. First, we formalize joint-event-driven interactions
among agents using a DEC-MDP model and define a mea-
sure for capturing the strength of such interactions. Second,
we develop a distributed self-organization approach, based
on the interaction measure, that dynamically adapts super-
vision organizations for coordinating DRL during the learn-
ing process. Unlike the work in [9], our self-organization pro-
cess does not change the connectivity of the original agent
network, but form a hierarchical supervisory organization
on top of it. The key problem of the organization adapta-
tion is to decide which agents need to be clustered together
so that their exploration strategies can be coordinated. Our
approach to this problem is inspired by the concept of nearly
decomposable systems [10], where interactions between sub-
systems are generally weaker than interactions within sub-
systems. In order to improve the quality and reduce the
complexity of coordinating DRL, our approach attempts to
group agents together that strongly interact with each other.
Unlike most of the previous work on self-organization (e.g.,
[11, 12]), our approach uses dynamic, rather than static,
information about agents’ behaviors based on their current
state of learning. In our approach, the organization adap-
tation and individual agents’ learning concurrently progress
and interact with each other. Experimental results show
that our dynamically evolving organizations outperform pre-
defined organizations for coordinating DRL.

The rest of the paper is organized as follows. Section 2 re-
views some background knowledge. Section 3 develops a dis-
tributed self-organization approach for dynamically evolv-
ing supervisory organizations to better coordinate DRL, and
extends the supervision framework [8] to integrate our ap-
proach. Section 4 empirically evaluates our approach. Fi-
nally, Section 5 summarizes the contribution of this work.

2. BACKGROUND
This section reviews a DEC-MDP model for representing

collaborative MAS, DRL for learning efficient approximate
policies for agents in collaborative MAS, and the supervision
framework for improving the performance of DRL.

2.1 Average-Reward, Factored DEC-MDP
We use factored DEC-MDP [13] to model the multiagent

sequential decision-making problem in a collaborative MAS.

Definition 1. An n-agent factored DEC-MDP is defined
by a tuple 〈S, A,T,R〉, where

• S = S1 × · · · × Sn is a finite set of world states, where
Si is the state space of agent i

• A = A1×· · ·×An is a finite set of joint actions, where
Ai is the action set for agent i

• T : S×A×S → � is the transition function. T (s′|s,a)
is the probability of transiting to the next state s′ after
a joint action a ∈ A is taken by agents in state s

• R = {R1, R2, . . . , Rn} is a set of reward functions.
Ri : S × A → � provides agent i with an individual
reward ri ∈ Ri(s,a) for taking action a in state s. The
global reward is a weighted sum of all local rewards:
R(s,a) =

Pn

i=1 wiRi(s,a), where wi is a weight.

A policy π : S × A → � is a function which returns the
probability of taking action a ∈ A for any given state s ∈ S.
Similar to [14], the value function for a policy π is defined
relative to the average expected reward per time step under
the policy:

ρ(π) = lim
N→∞

1

N
E[

N−1X
t=0

R(st,at)|π] (1)

where the expectation operator E(·) averages over stochastic
transitions and st and at are the global state and the action
taken at time t, respectively. The optimal policy is a policy
that yields the maximum value ρ(π).

Assume that the Markov chain of states under policy π
is ergodic. The expected reward ρ(π) then does not depend
on the starting state. Let p(s|π) be the probability of being
in state s under the policy π, which can be calculated as the
average probability of being in state s at each time step over
the infinite execution sequence:

p(s|π) = lim
N→∞

1

N

N−1X
t=0

P (st = s) (2)

Lemma 1. Suppose R(s) is the global reward function.
Then the value of policy π is

ρ(π) =
X
s∈S

p(s|π)
X
a∈A

π(s,a)R(s,a) (3)

The lemma follows immediately from Equation 2 and the
definition of the policy value in Equation 1 based on the
assumption that the state process is ergodic.

2.2 Decentralized Reinforcement Learning
DRL is used by agents to learn efficient approximate poli-

cies in a factored DEC-MDP environment, especially when
the transition and reward function is unknown. Each agent
learns its local policy based on its local observation and
reward in presence of other agents, who are also learning
a policy under the same conditions. The local policy πi :
Si × Ai → � for agent i returns the probability of taking
action ai ∈ Ai in local state si ∈ Si. As each agent only
observes local reward signals, the value function of a local
policy πi of agent i is defined as:

ρi(πi) = lim
N→∞

1

N
E[

N−1X
t=0

rt
i |πi] (4)

where the expectation operator E(·) averages over both stochas-
tic transitions and nondeterministic rewards and rt

i is the lo-
cal reward received at time t. The local reward rt

i = Ri(s
t)

depends on the global state st and appears nondeterminis-
tic from the local perspective. The objective of agent i is to
learn an optimal policy π∗

i to maximize ρi(πi).
Similar to Lemma 1, we can also reformulate the value

function of the local policy.

Lemma 2. Suppose E[ri(si)|π] is the expected local re-
ward of taking action ai in state si given a joint policy π.

ρi(πi|π−i) =
X

si∈Si

p(si|π)
X

ai∈Ai

πi(si, ai)E[ri(si, ai)|π], (5)

where p(si|π) as the probability of being in local state si un-
der the joint policy π and π−i is the set of policies of all
agents except agent i.

740

Due to factored reward, we have the following lemma that
can directly be proved from the definitions of factored DEC-
MDP and value functions of both joint and local policies.

Lemma 3. The value of a joint policy is a weighted sum
of the values of local policies, that is,

ρ(π) =
X

i

wiρi(πi|π−i), (6)

where the joint policy π = (π1, . . . , πn) and π−i is the set of
policies of all agents except agent i.

2.3 Organization-Based Control Framework
For Supervising DRL

A supervision framework was proposed in [8] is intended
to improve the speed, quality, and likelihood of DRL con-
vergence. This framework employed low-overhead, periodic
organizational control to coordinate and guide agents’ ex-
ploration during the learning process. The supervision pro-
cess described in Figure 1 contains two iterative activities:
information gathering and supervisory control. During the
information gathering phase, each learning agent records its
execution sequence and associated rewards and does not
communicate with its supervisor. After a period of time,
agents move to the supervisory control phase. During this
phase, each agent generates an abstracted state projected
from its execution sequence over the last period of time and
then reports it with an average reward to its cluster su-
pervisors. After receiving abstracted states of its subordi-
nate agents, a supervisor generates and sends an abstracted
state of its cluster to neighboring supervisors. Based on
abstracted states of its local cluster and neighboring clus-
ters, each supervisor generates and passes down supervisory
information, which is incorporated into the learning of sub-
ordinates and guides them to collectively learn their policies
until new supervisory information arrives. After integrating
supervisory information, agents move back to the informa-
tion gathering phase and the process repeats.

To limit communication overhead, learning agents report
their activities through their abstracted states. The abstract
state of a learning agent captures its slow dynamics. It can
be defined by features that are projected from fast-dynamics
features, such as visited local states, local policy, or inter-
actions with other agents, by using various techniques (e.g.,
averaging over the temporal scale). Similarly, abstracted
states of a cluster based capture its slow dynamics, which
can be projected from abstracted states of its members.

A supervisor uses rules and suggestions to transmit its su-
pervisory information to its subordinates. A rule is defined
as a tuple 〈c, F 〉, where

• c: a condition specifying a set of satisfied states
• F : a set of forbidden actions for states specified by c

A suggestion is defined as a tuple 〈c, A, d〉, where
• c: a condition specifying a set of satisfied states
• A: a set of actions
• d: the suggestion degree, whose range is [−1, 1]

Rules are“hard”constraints on subordinates’ behavior. Sug-
gestions are “soft” constraints and allow a supervisor to ex-
press its preference for subordinates’ behavior. A suggestion
with a negative degree, called a negative suggestion, urges a
subordinate not to do the specified actions. In contrast, a
suggestion with a positive degree, called a positive sugges-
tion, encourages a subordinate to do the specified action.

The greater the absolute value of the suggestion degree, the
stronger the suggestion.

Each learning agent uses the framework’s supervisory pol-
icy adaptation to integrate rules and suggestions into its pol-
icy learned by a normal multiagent learning algorithm and
generate an adapted policy. This adapted policy is intended
to coordinate the agent’s exploration with others. Rules are
used to prune the state-action space. Suggestions bias an
agent’s exploration. If an agent’s local policy agrees with its
supervisor’s suggestions, it is going to change its local policy
very little; otherwise, it follows the supervisor’s suggestions
and makes a more significant change to its local policy. More
formally, the integration works as follows:

πA(s, a) =

8>>><
>>>:

0 if R(s, a) �= ∅
π(s, a) + π(s, a) ∗ η(s)

∗ deg(s, a) else if deg(s, a) ≤ 0
π(s, a) + (1 − π(s, a))

∗ η(s) ∗ deg(s, a) else if deg(s, a) > 0

where πA is the adapted policy, π is the learning policy,
R(s, a) is a set of rules applicable to state s and action a,
deg(s, a) is the degree of the satisfied suggestion, and η(s)
ranges from [0, 1] and determines the suggestion receptivity.

This supervision framework utilizes a hierarchy of con-
trol and data abstraction, which is conceptually different
from existing hierarchical multi-agent learning algorithms
that use a hierarchy of task abstraction. Unlike conventional
heuristic approaches, this framework dynamically generates
distributed supervisory heuristics based on partially global
views to coordinate agents’ learning. Supervisory heuris-
tics guides the learning exploration without affecting pol-
icy update. In principle, the framework can work with any
multi-agent learning algorithms. However, the supervision
framework in [8] did not specify how to automatically con-
struct proper hierarchical supervision organizations, which
is the specific limitation addressed by this paper.

3. SUPERVISORY ORGANIZATION FOR-
MATION

This section describes our approach to dynamically evolv-
ing a hierarchical supervisory organization for better coordi-
nating DRL when agents are concurrently learning their de-
cision policies. Organization formation is best described via
answering two questions: how agent clusters are formed, and
how a cluster supervisor is selected. Our approach adopts
a relatively simple strategy for supervisor selection. Each
cluster selects an agent as its supervisor that minimizes the
communication overhead between supervisors and their sub-
ordinates. A new supervisor then establishes connections to
supervisors of neighboring clusters based on the connectivity
of their subordinates.

Agent clustering is to decide what agents should be grouped
together so that their learning exploration strategies can be
better coordinated by one supervisor. Because of limited re-
sources of computation and communication, it is usually not
feasible to put all agents together and use a fully centralized
coordination mechanism. To deal with bounded resources
and maintain satisficing performance of coordination, our
clustering strategy is to cluster highly interdependent agents
together, whose interactions have a great impact on the sys-
tem performance, and meanwhile to minimize interactions
across clusters. Thus the resulting system has a nearly de-

741

composable, hierarchical structure, which reduces the com-
plexity of coordinating DRL in a distributed way.

To measure the interdependency between agents, we char-
acterize a type of interactions among agents, called joint-
event-driven interactions, in a DEC-MDP model. We also
define a measure for the strength of such interactions, called
gain of interactions, and analyze how interactions between
agents contribute to the system performance by using this
measure. Based on this measure, we then propose a dis-
tributed, negotiation-based agent clustering algorithm to
form a nearly decomposable organization structure. Finally,
we discuss how to extend supervision framework proposed
in [8] to integrate our self-organization approach. For clar-
ity, this paper focuses the discussion on forming a two-level
hierarchy. Our organization formation approach can be it-
eratively applied in order to form a multi-level hierarchy.

3.1 Joint-Event-Driven Interactions
Definition 2. A primitive event ej = 〈sj , aj〉 occurs

when agent j executes action aj in state sj . A joint event
�eX = 〈ej1 , ej2 , . . . , ejh

〉 contains a set of primitive events
generated by agents X = {j1, j2, . . . , jh}. A joint event �eX

occurs iff all of its primitive events occur.

Note that our definition of a joint event is different from
that of an event in [15], where an event occurs if any one of
its primitive events occurs. For brevity, events discussed in
this paper refer to joint events. An event is used to capture
the fact that some agents did some specific activities. A
primitive event can be generated by either an agent or the
external environment. For convenience, we treat the exter-
nal environment as an agent.

Definition 3. A joint-event-driven interaction iXj =
〈�eX , ej〉 from a set of agents X onto agent j is a tuple that
includes a joint event �eX and a primitive event ej. A joint-
event-driven interaction iXj is effective iff the event �eX af-
fects the distribution over the resulting state of event ej, that
is, ∃sj ∈ Sj such that p(st+1

j = sj |e
t
j = ej) �= p(st+1

j =

sj |e
t
j = ej , �e

t
X = �eX), where t is the time.

Here we define an interaction between agents as an affect-
ing relationship, which is uni-directional. An effective inter-
action on an agent basically changes its transition function.
If there exists an effective interaction 〈〈eX〉, ej〉, then we say
that agents X effectively interact with agent j.

Now we define a measure for the strength of interactions
among agents. Let Ej

X = {�eX |∃ej ∈ Sj × Aj such that in-
teraction 〈�eX , ej〉 is effective} be all joint events generated
by a set of agents X that effectively interact with agent
j.Let Vj(sj |π) =

P
aj

πj(sj , aj)E[rj(sj , aj)|π] be the ex-

pected value of being in state sj , where πj is the policy
of agent j, and E[rj(sj , aj)|π] is the expected reward of ex-
ecuting action aj in state sj .

Definition 4. The gain of interactions from a set of
agents X to agent j, given a joint policy π, is

g(X, j|π) =
X

�eX∈E
j
X

p(�eX |π)
X
sj

p(sj |�eX , π)Vj(sj |π),

where p(�eX |π) is the probability that event �eX occurs and
p(sj |�eX) is the probability of being in state sj after �eX oc-
curs.

The value of the gain of interactions is affected by two fac-
tors: how frequently agents effectively interact (reflecting on
p(�eX |π)) and how well they are coordinated (reflecting onP

sj
p(sj |�eX)Vj(sj |π)). For example, in our experiments of

distributed task allocation, if agents X frequently interact
with agent j but they are not well coordinated, then the
value of g(X, j) tends to be a large negative value (all ex-
pected rewards are negative). Here ill-coordination means
that agents X frequently generate events that cause agent
j to be in states with low expected rewards. For instance,
they send tasks to agent j when it is overloaded.

Obviously, if agents X do not effectively interact with
agent j, then g(X, j|π) = 0 (because Ej

X = ∅). Now let us
consider a special type of interactions among agents, called
mutually exclusive interactions.

Definition 5. Two nonempty disjoint agent sets X and
Y are said to mutually exclusively interact with agent
j, iff Ej

X = ∅∨Ej
Y = ∅∨p(st+1

j = sj , e
t
j = ej , �e

t
X = �eX , �et

Y =

�eY) = 0, for all sj ∈ Sj , ej ∈ Sj × Aj , �eX ∈ Ej
X , �eY ∈ Ej

Y .

If X and Y mutually exclusively interact with agent j,
then no two effective interactions generated by X and Y ,
respectively, will simultaneously occur to affect the state
transition of agent j. In many applications [2, 4, 6], agents
have such a type of interactions. For example, in network
routing [2], the state space is defined by the destination of
packages and each decision of an agent is triggered by one
routing packet sent by one agent, so any two agents mutually
exclusively interact with any third agent. Mutually exclusive
interaction has the following property.

Proposition 1. If X and Y mutually exclusively interact
with agent j, then g(X ∪ Y, j|π) = g(X, j|π) + g(Y, j|π).

Proof. Let EX and EY be all events generated by X
and Y , respectively.

g(X ∪ Y, j|π) =
X

�eXY ∈E
j
X∪Y

p(sj, �eXY |π)Vj(sj |π)

=
X

�eX∈E
j

X

X
�eY ∈EY

X
sj

p(sj , �eX , �eY |π)Vj(sj |π)

+
X

�eX∈EX

X

�eY ∈E
j
Y

X
sj

p(sj, �eX , �eY |π)Vj(sj |π)

−
X

�e
j
X

∈EX

X

�eY ∈E
j
Y

X
sj

p(sj, �eX , �eY |π)Vj(sj |π)

=
X

�eX∈E
j
X

X
sj

p(sj, �eX |π)Vj(sj |π)

+
X

�eY ∈E
j
Y

X
sj

p(sj , �eY |π)Vj(sj |π)

= g(X, j|π) + g(Y, j|π)

Let X be all agents in a system and Xj ⊆ X be a set of
agents that effectively interact with agent j.

Proposition 2. If every two agents in Xj mutually ex-
clusively interact with agent j, then

ρj(πj |π−j) =
X

x∈Xj

g({x}, j|π).

742

Proof.

ρj(πj |π−j) =
X
sj

p(sj |π)Vj(sj |π)|π)

=
X

�eX∈E
j
Xj

p(�eX |π)
X
sj

p(sj |�eX)Vj(sj |π)

= g(Xj , j|π)

=
X

x∈Xj

g({x}, j|π)

Corollary 1. If every pair of agents in X mutually ex-
clusively interact with any third agent, then

X
j∈X

X
x∈X

wjg({x}, j|π) = ρ(π).

This corollary follows immediately from Lemma 3 and Propo-
sition 2. Proposition 2 and Corollary 1 show how interac-
tions contribute to the local and global performance, respec-
tively, that is, the greater the absolute value of the weighted
gain of interactions between two agents, the greater the (pos-
itive or negative) potential impact of their interactions on
both the local and global performance. Although the proper-
ties of the gain of interactions we have just shown are valid in
a restricted case, it can also be shown that the global perfor-
mance measure can be tightly bounded by a weighted sum of
gains of interactions among agents, which are approximately
mutually exclusive. Therefore, the weighted gain can gen-
erally reflect the strength of interactions between agents,
which is the basis of our self-organization approach.

3.2 Distributed Agent Clustering through Ne-
gotiation

Our clustering algorithm is intended to form a nearly de-
composable organization structure, where interactions be-
tween clusters are generally weaker than interactions within
clusters, to facilitate coordinating DRL. We assume all re-
ward weights are equal and use the absolute value of the
gain of interactions to measure the strength of interactions
among agents. Supervisory organizations formed by using
this measure will favorably generate rules and suggestions to
improve ill-coordinated interactions (i.e. with a large neg-
ative gain) and maintain well-coordinated interactions (i.e.,
with a large positive gain), which potentially improve the
performance of DRL. Our algorithm does not require inter-
actions between agents to be mutually exclusive.

Due to bounded computational and communication re-
sources, we limit the cluster size to control the quality and
complexity of coordination. Our clustering problem is for-
mulated as follows: given a set of agents X and the maxi-
mum cluster size θ, subdivide X into a set of clusters C =
{C1, C2, . . . , Cm}, such that

1. ∀i = 1, . . . , m, |Ci| ≤ θ,

2. ∪Ci = X and ∀i �= j, Ci ∩ Cj = ∅,

3. The total utility of clusters U(C) =
P

Ci∈C U(Ci) is

maximal, where U(Ci) is the utility of a cluster Ci

defined as follows:

U(Ci) =
X

xi,xj∈Ci and xi �=xj

|g({xi}, xj)| (7)

��������

���������������

�������
���	
������

���	
������

����
 ����
���	
������ ���	
������

��������

Figure 2: Self-organization negotiation protocol

Note that the total utility U(C) has no direct relation to
the system performance measure ρ(π). The purpose of our
clustering algorithm is not to directly improve the system
performance, but to form proper supervisory organizations
for coordinating learners that are ill-coordinated so as to
potentially improve the learning performance.

Our clustering approach is distributed and based on an it-
erative negotiation process that involves a two roles: a buyer
and a seller. A buyer is a supervisor who plans to expand
its control and recruit additional agents into its cluster. A
seller is a supervisor who has agents that the buyer would
like to have. Supervisors can be buyers and sellers simulta-
neously. A transaction is to transfer a nonempty subset of
boundary subordinates from a seller’s cluster to a buyer’s
cluster. The local marginal utility is the difference between
a cluster’s utility before a transaction and the utility after
the transaction. The social marginal utility is the sum of the
local marginal utilities of both the buyer and the seller.

Based on these terms, our clustering problem can be trans-
lated into deciding which sellers the buyers should attempt
to get agents from and which buyers the sellers should sell
their agents to so that U(C) is maximized.

The input to our clustering algorithm is an initial su-
pervisory organization and the gain of interactions between
agents. Figure 2 shows the dynamics of the negotiation pro-
tocol. Each supervisor only negotiates with its immediate
supervisors. As our system is cooperative, our negotiation
decisions are based on marginal social utility calculation. A
round of negotiation consists of the following sub-stages:

1. Seller advertising: the supervisor of each cluster Ci

sends an advertisement to each neighboring buyer. The
advertisement contains local marginal utility U lm(Ci/X) =
U(Ci) − U(Ci/X) of giving up each nonempty subset
X of its subordinates adjacent to the buyer’s cluster.

2. Buyer bidding: the supervisor of each cluster Cj waits
for a period of time, collecting advertisements from
neighboring supervisors. When the period is over,
it calculates local marginal utility U lm(Cj ∪ X) =
U(Cj ∪ X) − U(Cj) and then social marginal utility
Usm(Cj , Ci, X) = U lm(Cj ∪ X) − U lm(Ci/X) for in-
troducing each nonempty subset X of subordinates of
a seller of cluster Ci. If Usm(Cj , Ci, X) is the greatest
social marginal utility and Usm(Cj , Ci, X) > 0, then
the buyer sends a bid to the supervisor of cluster Ci

with the social marginal utility Usm(Cj , Ci, X); other-
wise, do nothing.

3. Selling: given the multiple responses from buyers dur-
ing a period time, the supervisor of cluster Ci chooses
to transfer a subset of subordinates X to the cluster

743

�������������
	
��������

��������������
����������

	�������������
��
�	�����

�����������

���������
����������

�����������
��������������

	�������
�������
��
����
�

�������������������

Figure 3: Extended supervision framework

��

��

��

��

��

��

��

�	�	�	�	�	�		

�	
��� �	
����

Figure 4: Iterations of three activities: information

gathering (IG), supervisory control (SC), and organiza-

tion adaptation (OA)

Cj if Usm(Cj , Ci, X) is the maximal social marginal
utility that the seller receives during this round.

The basic idea of our approach is similar to the LID-JESP
algorithm [16] and the distributed task allocation algorithm
in [17]. LID-JESP is used to generate offline policies for
agents in a special DEC-POMDP, called ND-POMDP. How-
ever, we focus on agent clustering. Our negotiation strategy
is also similar to that in [12], but uses one less sub-stage in
each round of negotiation.

Proposition 3. When our clustering algorithm is applied,
the total utility U(C) strictly increases until local optimum
is reached.

Proof Sketch. By construction, only non-neighboring
supervisors can transfer some subordinates to their neigh-
boring clusters and they will only do this if the social marginal
utility is positive, which results in an increase of the total
utility U(C). In addition, a supervisor’s transferring sub-
ordinates to a neighboring cluster will not affect the utility
of other neighboring clusters and non-neighboring clusters.
Thus with each cycle the total utility is strictly increasing
until local optimum is reached.

3.3 Extended Supervision Framework
The gain of interactions is defined on the transition func-

tion, the reward function, and a specific joint policy. How-
ever, as all agents are learning their decision policies, inter-
actions between agents may change over the time. To deal
with this issue, we decompose the system runtime into a se-
quence of epochs. The gain of interactions between agents
is approximately estimated from their execution trace dur-
ing an epoch. Each epoch contains three activities: infor-
mation gathering, and supervisory control and organization
adaptation. The supervision framework proposed in [8] is

now extended to allow dynamically evolving supervisory or-
ganizations for better coordinating DRL when agents are
concurrently learning their decision policies. As shown in
Figure 3, the extended framework contains these three in-
teracting activities. Three activities iterate in the way as
shown in Figure 4 during the whole system runtime.

Both information gathering activity and supervisory con-
trol activity have been discussed in detail in Section 2.3.
With this extended framework, during the information gath-
ering phase, each agent collects information about interac-
tions from its neighbors, in addition to its execution se-
quence and reward information. After a period of time,
agents will move to supervisory control phase, at the be-
ginning of which each agent will calculate the gain of inter-
actions with its neighbors and report it along with other in-
formation (i.e., abstracted states and rewards) to its supervi-
sor. To avoid interfering the DRL supervision, organization
adaption only happens after the supervisory control phase.
However, since there is no communication between learning
agents and their supervisors during the information gather-
ing stage, organization adaption can be conducted concur-
rently with the next phase of information gathering. During
this phase, using information of subordinates’ interactions
with their neighbors, supervisors run our negotiation-based
clustering algorithm and supervisor selection strategy to dy-
namically adapt the current supervisory organization. The
resulting organization will be used for the next supervisory
control activity. Initially, the system starts with a very sim-
ple supervisory organization, where each agent is its own su-
pervisor. Then the supervisory organization is periodically
evolving as agents are learning and acting.

4. EXPERIMENTS
We evaluated our approach in a distributed task allocation

problem (DTAP) [8] with Poisson task arrival distribution
and exponentially distributed service time. Agents are or-
ganized in a network. Each agent may receive tasks from
either the environment or its neighbors. At each time unit,
an agent makes a decision for each task received during this
time unit whether to execute the task locally or send it to
a neighbor for processing. A task to be executed locally
will be added to the local queue. Agents interact via com-
munication messages and communication delay between two
agents is proportional to the distance between them. The
main goal of DTAP is to minimize the average total service
time (ATST) of all tasks, including routing time, queuing
time, and execution time.

4.1 Experimental Setup
We chose one representative MARL algorithm, the Weighted

Policy Learner (WPL) algorithm [18], for each worker to
learn task allocation policies. WPL is a gradient ascent al-
gorithm where the gradient is weighted by π(s, a) if it is
negative; otherwise, it will weighted by (1 − π(s, a)). A
worker’s state is defined by a tuple 〈l, f〉, where l is the cur-
rent work load (or total work units) in the local queue and
f is a boolean flag indicating whether there is a task to be
made a decision. Each neighbor corresponds to an action
which forwards a task to that neighbor, and an agent itself
corresponds to the action that put a task to the local queue.
The reward r(s, a) of doing an action a for an task is the
negative value of the expected service time to complete the
task after doing a in state s, which is estimated from previ-

744

ous finished tasks. All agents use WPL with learning rate
0.001.

The abstracted state of a worker is projected from its
states and defined by its average work load over a period
of time τ (τ = 500 in our experiments). The abstracted
state of a supervisor is defined by the average load of its
cluster, which can be computed from the abstracted states
of its subordinates. A subordinate sends a report, which
contains its abstracted state, to its supervisor every τ time
period. Supervisors use simple heuristics to generate rules
and suggestions. With an abstracted state 〈l̄〉, a supervisor
generates a rule that specifies, for all states whose work load
exceeds l̄, a worker should not add a new task to the local
queue. This rule helps balance load within the cluster. A su-
pervisor also generates positive (or negative) suggestions for
its subordinates to encourage (or discourage) them forward-
ing more tasks to a neighboring cluster that has a lower (or
higher) average load. The suggestion degree for each subor-
dinate depends on the difference between the average load
of two clusters, the number of agents on the boundary, and
the distance of the subordinate to the boundary. Therefore,
suggestions are used to help balance the load across clus-
ters. The implementation detail of generating supervisory
information is discussed in [19]. Our experiments use the
receptivity function η(s) = 1000/(1000 + visits(s)), where
visits(s) is the number of visits on state s.

To allow its supervisor to run our negotiation-based self-
organization algorithm, each agent calculates the gain of in-
teractions from other agents. As mentioned in Section 3.3,
because of learning, each agent needs to approximately esti-
mate each component in the definition of the gain of interac-
tions from the history of its local executions and interactions
with other agents in order to calculate it. In DTAP, one
agent only interacts with its neighbors by forwarding tasks
to them and its state does not affect states of its neigh-
bors. Let �ej

k be the event of agent k, forwarding a task to
agent j, that effectively interacts with agent j. To calcu-
late g({k}, j|π), agent j estimates p(�ej

k|π) as the ratio of the
number of tasks received from agent k to the total number
of received tasks and p(sj |�e

j
k) as the ratio of the number of

visits on state sj resulting from �ej
k to the total number of

visits on this state, and uses its current learned policy πj

and reward function rj .
Three measurements are evaluated: average total service

time (ATST), average number of messages (AMSG) per task,
time of convergence (TOC), and average cluster size (ACS).
ATST indicates the overall system performance. AMSG
takes into account all messages for routing task, coordina-
tion, and self-organization negotiation. To calculate TOC,
we take sequential ATST values with certain size. If the
ratio of those values’ deviation to their mean is less than a
threshold (we use threshold of 0.025), we consider the sys-
tem stable. TOC is the start time of the selected points.
ACS is the average cluster size in the system at TOC.

Experiments were conducted using a 18x18 grid network
with 324 agents. All agents have the same execution rate
and tasks are not decomposable. The mean of task service
time is μ = 10. We tested two patterns of task arrival:

Side Load where agents in a 3x3 grid at the middle of each
side receive tasks with rate λ = 0.8 and other agents
receive no tasks from the external environment.

Corner Load where only agents in the 8x8 grid at the up-

per left corner receive tasks from the external environ-
ment. Within that grid, the 36 agents at the upper
left corner has the task arrival rate λ = 0.25 and the
rest agents has the rate λ = 0.7.

We compared the DRL performance under four cases:
None, Fixed-Small, Fixed-Large, and Self-Org. In the None
case, no supervision is used to coordinate DRL. Both Fixed-
Small and Fixed-Large cases use a fixed organization, the
former with 36 clusters, each of which is a 3x3 grid, and the
latter with 9 clusters, each of which is a 6x6 grid. The Self-
Org case uses our self-organization approach to dynamically
evolving supervision organization.

In each simulation run, ATST and AMSG are computed
every 500 time units to measure the progress of the system
performance. Results are then averaged over 10 simulation
runs and the variance is computed across the runs.

4.2 Experimental Results

:����
, @,,, +,,,, +@,,, 6,,,,

�
:�
:

+,

/,

A,
+,,
+B,

C���
=�D��E��
��
=�D��E�
�	�
����E��	

Figure 5: ATST under side load

:����
, @,,, +,,,, +@,,, 6,,,,

�
:�
:

6,

B6,
F6,
G6, C���

=�D��E��
��
=�D��E�
�	�
����E��	

Figure 6: ATST under corner load

Figure 5 and 6 plot the trends of ATST, as agents learn,
for different organization structures with different task ar-
rival patterns. Note that the y axis in the plots is logarith-
mic. The supervision framework generally improves both
the likelihood and speed of the learning convergence. Su-
pervision with self-organized structure has a better learn-
ing curve than that with predefined organization structures.
This is because our self-organization approach clusters highly
interdependent agents together, and focused coordination on
them tends to greatly improve the system performance. The
Fixed-Small case has a small cluster size and consequently
some highly interdependent agents are not coordinated well.
In contrast, the Fixed-Large case has a large cluster size,
which enlarges both the view and control of each supervisor
and potentially improve the system performance. However,

745

with a large cluster size, an abstracted state of a cluster
(generated by a supervisor) tends to lose detailed informa-
tion about its subordinates, and also weakily interdependent
agents are mixed with highly interdependent agents, both of
which degrade the coordination quality.

Under corner load, the system with both None and Fixed-
Small cases seems not to converge. For the None case, due to
communication delay and limited views, agents in the top-
left conner do not learn quickly enough knowledge about
where light-loaded agents are. As a result, more and more
tasks loop and reside in the top-left 8x8 grid. This makes the
system load severely unbalanced and the system capability
not well utilized, which causes the system load to mono-
tonically increase. For the Fixed-Small case, because of a
small cluster size, a supervisor’s local view of the system
may not be consistent with the global view. Some supervi-
sors of overloaded clusters find their neighbors having even
higher loads and consider their own clusters are “lightly”
loaded. As a result, they generate incorrect directives for
their subordinates, which degrade their normal learning.

Structure ATST AMSG TOC ACS
None 33.47 ± 1.67 5.81 ± 0.07 13000 0

Fixed-Small 29.09 ± 1.27 6.04 ± 0.11 10000 9
Fixed-Large 29.30 ± 1.46 6.16 ± 0.14 8500 36

Reorg 28.98 ± 1.15 6.59 ± 0.08 6500 14.50 ± 0.55

Table 1: Performance under side load

Structure ATST AMSG TOC ACS
None N/A N/A N/A 0

Fixed-Small N/A N/A N/A 9
Fixed-Large 44.94 ± 2.10 11.26 ± 0.10 12500 36

Self-Org 42.87 ± 2.06 11.41 ± 0.05 10500 25.33 ± 2.16

Table 2: Performance under corner load

Table 1 and 2 show different measures for each supervi-
sion structure at their respective convergence time points.
Due to the system divergence, both the None and Fixed-
Small cases have no data under corner load. In addition
to improving the convergence rate, the supervision frame-
work also decreases the system ATST. Self-organization fur-
ther improves the coordination performance, as indicated
by its ATST and TOC. Because of negotiations, the self-
organization case has a slightly heavier communication over-
head than those of fixed organizations.

5. CONCLUSION
In this paper, we formally define and analyze a type of

interactions, called joint-event-driven interactions, among
agents in a DEC-MDP. Based on this analysis, we develop
a distributed self-organization approach that dynamically
adapts hierarchical supervision organizations for coordinat-
ing DRL during the learning process. Experimental results
demonstrate that dynamically evolving hierarchical organi-
zations outperform predefined organizations in terms of both
the probability and the quality of convergence.

6. REFERENCES
[1] Daniel S. Bernstein, Robert Givan, Neil Immerman,

and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes.
Mathematics of Operations Research, 27(4):819–840,
2002.

[2] Justin A. Boyan and Michael L. Littman. Packet
routing in dynamically changing networks: A
reinforcement learning approach. In NIPS’94,
volume 6, pages 671–678, 1994.

[3] David H. Wolpert, Kagan Tumer, and Jeremy Frank.
Using collective intelligence to route internet traffic. In
NIPS’99, pages 952–958, 1999.

[4] Ying Zhang, Juan Liu, and Feng Zhao.
Information-directed routing in sensor networks using
real-time reinforcement learning. Combinatorial
Optimization in Communication Networks,
18:259–288, 2006.

[5] Chongjie Zhang, Victor Lesser, and Prashant Shenoy.
A Multi-Agent Learning Approach to Online
Distributed Resource Allocation. In IJCAI’09, 2009.

[6] Haizheng Zhang and Victor Lesser. A reinforcement
learning based distributed search algorithm for
hierarchical content sharing systems. In AAMAS’07,
2007.

[7] Robert Crites and Andrew Barto. Improving elevator
performance using reinforcement learning. In NIPS’96,
pages 1017–1023, 1996.

[8] Chongjie Zhang, Sherief Abdallah, and Victor Lesser.
Integrating organizational control into multi-agent
learning. In AAMAS’09, 2009.

[9] Sherief Abdallah and Victor Lesser. Multiagent
reinforcement learning and self-organization in a
network of agents. In AAMAS’07, 2007.

[10] H. A. Simon. Nearly-decomposable systems. In The
Sciences of the Artificial, pages 99–103, 1969.

[11] Bryan Horling and Victor Lesser. Using quantitative
models to search for appropriate organizational
designs. Autonomous Agents and Multi-Agent
Systems, 16(2):95–149, 2008.

[12] Mark Sims, Claudia Goldman, and Victor Lesser.
Self-Organization through Bottom-up Coalition
Formation. In AAMAS’03, pages 867–874, 2003.

[13] Carlos Ernesto Guestrin. Planning under uncertainty
in complex structured environments. PhD thesis,
Stanford University, Stanford, CA, USA, 2003.

[14] Marek Petrik and Shlomo Zilberstein. Average-reward
decentralized markov decision processes. In IJCAI,
pages 1997–2002, 2007.

[15] Raphen Becker, Victor Lesser, and Shlomo Zilberstein.
Decentralized Markov Decision Processes with
Event-Driven Interactions. In AAMAS’04, volume 1,
pages 302–309, 2004.

[16] Ranjit Nair, Pradeep Varakantham, Milind Tambe,
and Makoto Yokoo. Networked distributed pomdps: a
synthesis of distributed constraint optimization and
pomdps. In AAAI’05, pages 133–139, 2005.

[17] Michael Krainin, Bo An, and Victor Lesser. An
Application of Automated Negotiation to Distributed
Task Allocation. In IAT’07, pages 138–145, 2007.

[18] Sherief Abdallah and Victor Lesser. Learning the task
allocation game. In AAMAS’06, 2006.

[19] Chongjie Zhang, Sherief Abdallah, and Victor Lesser.
MASPA: Multi-agent automated supervisory policy
adaptation. In University of Massachusetts Amherst
Computer Science Technical Report #08-03, 2008.

746

